
UCRL-ID-133262

An Object-Oriented Framework for Magnetic-Fusion
Modeling and Analysis Codes

R. H. Cohen
T.-Y. Brian Yang

March 4,1999

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and
may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the
’ ,--

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W-7405-ENG-48.

An Object-Oriented Framework for Magnetic-Fusion

Modeling and Analysis Codes

Ronald H. Cohen and T.-Y. Brian Yang

Magnetic Fusion Energy Program

Lawrence Livermore National Laboratory

1 Introduction

The magnetic-fusion energy (MFE) program, like many other scientific and
engineering activities, has a need to efficiently develop complex modeling
codes which combine detailed models of components to make an integrated
model of a device, as well as a rich supply of legacy code that could provide
the component models. There is also growing recognition in many technical
fields of the desirability of steerable software: computer programs whose
functionality can be changed by the user as it is run. This project had
as its goals the development of two key pieces of infrastructure that are
needed to combine existing code modules, written mainly in Fortran, into
flexible, steerable, object-oriented integrated modeling codes for magnetic-
fusion applications. These two pieces are (1) a set of tools to facilitate the
interfacing of Fortran code with a steerable object-oriented framework (which
we have chosen to be based on PythonlW3, an object-oriented interpreted
language), and (2) a skeleton for the integrated modeling code which defines
the relationships between the modules. The first of these activities obviously
has immediate applicability to a spectrum of projects; the second is more
focussed on the MFE application, but may be of value as an example for
other applications.

2 Tool Development

For codes developed based on the Basis4 system, the code developers provide
interface description files which contain information about the variables and
routines in the code. A tool in the Basis system called MAC can then be

1

used to generate the required glue functions that enable the Basis interpreter
to access the variables in the code, and to invoke Fortran functions and
subroutines. Although Basis system has been ported to many computer
platforms, there are still some platforms, especially parallel computers, where
Basis is not supported. In order to run their code on platforms where Basis
is not available, LLNL Heavy Ion Fusion (HIF) program is the process of
converting their Basis based code to a Python based code. As part of the
conversion process, David Grote has developed a tool called PYMAC, which
serves the same purposes as MAC, i.e., parsing the interface description files
written for the Basis base code and generating the required glue functions,
only in this case for the Python interpreter instead of the Basis interpreter.

Most of the Fortran legacy codes in the MFE community were not writ-
ten for use with Basis; therefore, we could not use PYMAC directly in our
project. Instead, we borrowed some techniques in PYMAC and developed
our own tools to automate the Python-Fortran interface. Our tools con-
sists of two sets of Python codes, one (PYCOMMON) for making Fortran
common-block variables accessible to the Python interpreter, and the other
(PYCFORTRAN) h h w ic enables the Python interpreter to invoke Fortran
functions and subroutines.

2.1 PYCOMMON

The input to PYCOMMON are files containing standard Fortran- common-
block declarations and variable-type declarations. The following is an exam-
ple of input files to PYCOMMON:

integer kion, kk, kj, curtype, njcur,diffeqmethd
parameter (kj = 51, kion = 5, kk = kion + 4)
real*8 u, usave, en, te, ti, rbp, ene, enesav, curden, etor,

uav, uav0, eneav0, eneavl, curpar-soln
’ common /soln/ u(kk,kj), usave(kk,kj), en(kj,kion), te(kj),

ti(kj), rbp(kj), ene(kj), enesav(kj), curden(
etor(kj), uav(kk,kj), uavO(kk,kj), eneavO(kj),
eneavl(kj), curpar-soln(kj), njcur, curtype,
diffeqmet hd

The output are files containing wrapper functions written in C. These
output files can then be compiled and linked with the Fortran- code to

2

form a dynamically loadable Python module. When imported by Python,
this Python module contain Python objects with attributes corresponding to
the items in the Fortran common blocks. If the file above is named ‘soln.i’, the
Python module will contain a Python object named ‘soln’ which is a proxy
to all the parameters and variables in ‘so1n.i’. Parameters l&on, Iclc, and Icj
are mapped into read-only attributes of the proxy object ‘soln’. Attributes
corresponding the the variables in the common blocks allow both read and
write access. For example, the following Python statement:

>>> soln.njcur = 1

sets the variable ‘njcur’ in the common block to 1.
Attributes corresponding to array variables are references to Python ob-

jects of the ‘PyArray’ type, a built-in type defined in the Python Numeric
module. The elements of the arrays can be manipulated through the built-
in functionality of the ‘PyArray’ type. For example, the following Python
statements:

>>> soln.te[:] = 0.2
>>> soln.u[O] = soln.te

first set all the elements of the one-dimensional array ‘te’ to 0.2, and then
element-wise copy ‘te’ to the first row of the two-dimensional array ‘II’. No-
tice that the indices of ‘PyArray’ objects start from 0; therefore, soZn.u[i,j]
corresponds to u(i + 1, j + 1) in Fortran.

2.2 PYCFORTRAN
The input to PYCFORTRAN are files containing standard declarations of
Fortran- subroutines, functions, and variable-type, with an extension to
specify arguments as input or output variables. The following is an example
of such input files:

% ModuleName = an-example
% CommonBlocks =
% Fortran

subroutine diff(a:in, diff-a:out, n:in)

3

integer n
real*8 a(n), diff-a(n-1)

% Fortran
subroutine diffx(a:in, diff-a:out, m:in, n:in)
integer m, n
real*8 a(m, n), diff-a(m-1, n)

% Fortran
subroutine diff-y(a:in, diff-a:out, m:in, n:in)
integer m, n
real*8 a(m, n), diff-a(m, n-l)

The output of PYCFORTRAN are also files containing wrapper functions
written in C. Again, such files can be compiled and linked with the Fortran-
77 code to form dynamically loadable Python modules. In the input file
for PYCFORTRAN, users can also specify names of PYCOMMON input
files to be included as parts of the Python Module, so that the wrapper
functions for the corresponding common blocks are included in the output of
PYCFORTRAN. For example, if the second line in the above file were to be
changed to:

% CommonBlocks = soln

The Python proxy object ‘soln’ in the example in the previous section would
be in the Python module ‘an-example’.

In addition to the files for wrapper functions, PYCFORTRAN also gener-
ates Python interface description files which are only documentations of the
signatures of the Python functions and are neither compiled nor linked with
the Python extension modules. If the above file is named ‘an-example.pack’,
the corresponding Python interface description file generated by PYCFOR-
TRAN will be named ‘an-example.py.signature’ containing the following in-
formation:

double diff-a[n-1] <- diff (double a[n], int n)
double diff-a[m-1, n] <- diffx (double a[m, n], int m, int n)
double diff-a[m, n-l] <- diff-y (double a[m, n], int m, int n)

Notice that the arguments declared with the ‘:out’ attribute do not appear in

4

the argument lists of the Python functions. Instead these arguments become
the returned values of the routines. For array arguments, this also means
that new ‘PyArray’ objects are created. Since the Fortran routine can be
a function with a returned value and there can be more than one argument
tagged with the attribute ‘:out’, the Python functions needs to return a
Python ‘tuple’ object. The order of the returned objects in the ‘tuple’ object
is the same as the order they are declared in the Fortran routine. If the
Fortran routine is a function, its returned value is the first element of the
returned ‘tuple’ object. For a Fortran subroutine which has no argument
with an ‘:out’ tag the corresponding Python function returns ‘None’, a special
Python object representing ‘nothing’.

A Fortran scalar argument with a ‘:in’ tag appears in the argument list but
not in the returned tuple. Furthermore, the argument will not be modified at
the Python level even when the Fortran function inadvertently modifies that
argument. This is because the scalar argument being passed to the Fortran
function is a copy of the Python scalar used as the argument. A Fortran
scalar argument without an input/output tag appears in both the argument
list and the returned tuple, because the argument will not be modified and
the updated value has to be accessed as an element in the returned tuple. A
Fortran array argument with an ‘:in’ tag, or without a tag, appears in the
argument list but not in the returned tuple. Beware that the ‘:in’ tag has
no effect on array arguments, i.e., they can still be modified by the function.
This is because Fortran 77 has no way to prevent an argument from being
modified, and we choose not to make a copy of the array before passing it to
the Fortran routine.

The Fortran types supported by PYCFORTRAN so far are ‘integer’ and
‘real*8’, both scalars and arrays with dimensions no more than 5. For-
tran integer scalars are mapped to Python ‘int’-type objects, and Fortran
‘rea1*8’ scalars are mapped to Python ‘float’-type objects. Fortran arrays are
mapped to Python ‘PyArray’-type objects. PyArray objects have another
level of type system among themselves. Fortran integer arrays are mapped to
‘PyArraylNT’, and Fortran real*8 array are mapped to ‘PyArrayDOUBLE’.
By default, PyArray objects have row-major strides. However, the Python
functions generated by PYCFORTRAN accept only PyArray objects with
column-major strides because Fortran arrays have column-major strides. The
Python function ‘transpose’ in the ‘Numeric’ module can be used to turn a
PyArray object with row-major strides into one with column-major strides.

5

For example, if a Python function ‘f(x)’ expects the variable ‘x7 to be a 2x3
array with column-major strides, and if ‘y’ is a 3x2 row-major Python array,
the following will be a legal statement:

>>> from Numeric import transpose
>>> f(transpose(y))

When Python functions generated by PYCFORTRAN return PyArray ob-
jects, the returned PyArray objects always have column-major strides.

3 An Object-Oriented Transport Code

The second part of the project is to design the skeleton for an object-oriented
transport code - the basic prototype for a tokamak modeling code. A key
element in the design process is the development of a class hierarchy. A class,
in a crude way, can be regarded a data structure plus functions that manip-
ulate the data structure. In an object-oriented code, the logical components
of the code are objects each of which is an instance of one class or another.
Because the class hierarchy, which reflects the relationships between classes,
determines how objects in the code interact with one another, it affects the
stability of the code structure as the code continues to evolve to include
more capability. A well designed class hierarchy can reduce the dependency
among the components so that new features can be added to the code with
minimum changes.

Recognizing that design of the class hierarchy is an important but difficult
task that requires many iterations of trial and error, we first developed a first-
generation class hierarchy for a prototype Python transport code. The reason
for building the prototype in Python is because it is a interpreted language
providing many flexible features that a compiled object-oriented language
like C++ lacks. Moreover, Python can be used as a scripting language which
allows code steering, one of the goals for this project.

In May 1998 th e national Magnetic Fusion Energy Program launched the
National Transport Code (NTC) D emonstration Project. We brought to the
table our design concepts developed as part of our LDRD activity earlier
in the year, and re-oriented them to be compatible with objectives of the
NTC project: web-invocable, distributed web client, physics application, and

6

database server, and a distributed development team. Our efforts in this area,
since May, have been supported by NTC and base-program funds, but have
drawn heavily from our earlier experience. Currently the class structure takes
advantage of the encapsulation methodology of object-oriented design such
that any changes in transport models, methods of updating fields (solving
PDE or reading from a data base), independent variables (toroidal flux or
poloidal flux), and so on, can be achieved by changing a very small isolated
part of the code. This makes the code stable and easy to maintain.

The Python transport code has been one of the keys elements for the NTC
Project to successfully demonstrate that modern computer science techniques
can be applied to the development of a transport code that performs non-
trivial physics simulations. Although the NTC Project plans to migrate the
physics code to C++, it is intended that the Python transport code will
continue to play a significant role in testing new capabilities before they are
implemented in the C++ code.

References

[I] Guido van Rossum has published four manuals for the Python language,
available at http:// www.python.org/doc. The www.python.org Web-site
has a plethora of other references helpful in learning Python, as well as
sources and some pre-compiled binaries.

[2] Mark Lutz, Programming Python, O’Reilly Press, Sebastopol, CA
(1996).

[3] Aaron Watters, Guido van Rossum, James C. Ahlstrom, Internet Pro-
gramming with Python, M&T Books, New York, NY (1996).

[4] P.F. Dubois, “Basis: Setting The Scientist Free”, 16th IEEE Confer-
ence on Numerical Simulation of Plasmas, Buffalo, NY (1989).

